Phase Transitions in a Relaxation Model of Mixed Type with Periodic Boundary Condition
نویسندگان
چکیده
We study the asymptotic behavior of solutions for a 2×2 relaxation model of mixed type with periodic initial and boundary conditions. We prove that the asymptotic behavior of the solutions and their phase transitions are dependent on the location of the initial data and the size of the viscosity. If the average of the initial data is in the hyperbolic region and the initial data does not deviate too much from its average,we prove that there exists a unique global solution and that it converges time-asymptotically to the average in the same hyperbolic region. No phase transition occurs after initial oscillations. If the average of the initial data is in the elliptic region and the initial data does not deviate too much from its average, and in addition if the viscosity is big, then the solution converges to the average in the same elliptic region, and does not exhibit phase transitions after initial oscillations. If, however, the viscosity is small, numerical evidence indicates that the solution oscillates across the hyperbolic and elliptic regions for all time, exhibiting phase transitions. In this case, we conjecture that the solution converges to an oscillatory standing wave (steady-state solution).
منابع مشابه
Phase Transitions in a Coupled Viscoelastic System with Periodic Initial-boundary Condition: (i) Existence and Uniform Boundedness
This paper focuses on the phase transitions of a 2×2 system of mixed type for viscosity-capillarity with periodic initial-boundary condition in a viscoelastic material. By the Liapunov functional method, we prove the existence, uniqueness, regularity and uniform boundedness of the solution. The results are correct even for large initial data.
متن کاملAnalytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)
This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...
متن کاملBuoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions
During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...
متن کاملA Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations
In a perforated well, fluids enter the wellbore through array of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time ...
متن کاملOn a Penrose { Fife Model with Zero Interfacial EnergyLeading
In this paper we study an initial{boundary value Stefan{type problem with phase relaxation where the heat ux is proportional to the gradient of the inverse absolute temperature. This problem arises naturally as limiting case of the Penrose{Fife model for diiusive phase transitions with non{conserved order parameter if the coeecient of the interfacial energy is taken as zero. It is shown that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006